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It is a privilege to participate in honoring Professor Jaroslav Koutecký, a very distinguished scientist
and a good friend for many years.

After a brief review of polarizability, charge capacity and hardness, we look at some of the
consequences of the requirement, in density functional theory, that the chemical potential
and hardness be evaluated with the nuclear potential being held constant. The effects of this
can be quite significant, one of them being that some molecules, especially closed-shell,
may have zero chemical potentials. We propose that hardness be defined operationally
through its inverse relationship to polarizability. Drawing upon correlations found earlier
for the latter property, we present a formula for relative hardness in terms of the volume of
a molecule and the average local ionization energy on its surface. The formula can also be
applied to molecular components, e.g. functional groups, and we show – within the context
of this approach – how their contributions combine to yield the hardness of the molecule.
This involves a leveling-off effect that explains the relatively small range of hardness values
obtained for a group of 33 molecules.
Keywords: Polarizability; Hardness; Charge capacity; Chemical potential; Group hardness;
Density functional theory.

Polarizability, Charge Capacity and Hardness

Polarizability, �, is a fundamental property of atoms and molecules, a phys-
ical observable. It determines the first-order response of the system’s charge
distribution to an external electric field � 1,2

� � � ��( ) ( )= +0 (1)

�(�) and �(0) are the dipole moments in the presence and absence of the
field. � is a six-component tensor, which can be represented by a 3 × 3 ma-
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trix. If this is diagonalized, the scalar (or average) value of � can be ex-
pressed in terms of the resulting diagonal elements

α α α α= 〈 〉 = + +�
1
3

( )ii jj kk . (2)

αii, αjj and αkk are the components of � along the i, j and k axes. They can
sometimes differ quite significantly, as will then the corresponding compo-
nents of �(�). For our present purposes, however, it will be sufficient to fo-
cus on α (= 〈 〉� ).

The importance of polarizability with respect to both covalent and
noncovalent interactions has long been recognized, even though the word
itself was not always used. In 1963, Pearson3,4 proposed his hard and soft
acid/base theory, which was able to rationalize a considerable amount of
known reactive behavior. In this context, hardness and softness indicate
low and high polarizability, respectively. At about the same time, the con-
cept of charge capacity was emerging, particularly through the work of
Huheey5,6. If one wishes to account for the change in an atom’s electro-
negativity χ as it gains or loses electronic charge in the process of forming a
molecule, a convenient approach is to write

χ χ
κ

( ) ( )Q
Q= +0 (3)

where χ(Q) is the electronegativity of the interacting atom with charge Q
and χ(0) is the intrinsic neutral atom value. The parameter κ is the “charge
capacity”, which determines how much χ is affected by a transfer of charge.
A small κ means that χ decreases (increases) rapidly with a gain (loss) of
electronic charge, thereby diminishing the driving force of the process;
alarge κ has the opposite effect. Thus, κ is the capacity to accommodate
a positive or negative charge, which must depend upon how well the sys-
tem can adapt to it, i.e. its polarizability. The existence of a correlation be-
tween κ and α was indeed anticipated by Huheey6, and supporting evidence
was later found7. The concept of charge capacity has been used to explain
a variety of experimental observations, for functional groups as well as
atoms; for a review, see Politzer et al.8.

An alternative form of Eq. (3) can be obtained by expanding χ(Q) in a
Taylor series around Q = 0 and truncating it after the first-order term

χ χ ∂χ
∂

( ) ( )Q Q
Q Q

= + 



 =

0
0

. (4)
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From Eqs (3) and (4)

1

0κ
∂χ
∂

= 



 =Q Q

. (5)

Equation (5) will now be shown to link charge capacity to the density func-
tional formulation of hardness.

Parr et al.9 have identified electronegativity with the negative of the
chemical potential, µ

χ µ ∂
∂

= − = −





E
N v ( )r

. (6)

In Eq. (6), E is the energy of a ground-state atom or molecule, N is its num-
ber of electrons and v(r) is the nuclear potential. Equation (6) can be
viewed as a more rigorously-based version of Iczkowski and Margrave’s10

χ ∂
∂

= 



 =

E
Q Q 0

(7)

although it should be noted that Eq. (7) refers to an interacting atom (E is
the valence-state energy). Parr and Pearson11 subsequently gave a quantita-
tive definition of hardness, η

η ∂
∂

∂χ
∂

2

=






 = − 





1
2

1
22

E
N Nv v( ) ( )r r

. (8)

η can be rewritten in terms of Q by invoking, for an atom, Q = Z – N; then
from Eq. (8)

η ∂χ
∂

∂χ
∂

= − 





= 





1
2

1
2N Qv v( ) ( )r r

. (9)

Combining Eqs (5) and (9)7

2
1η
κ

= . (10)

It is fair to say, therefore, that the concept of charge capacity anticipated
the density functional hardness. It should be emphasized, however, that
the former focuses upon an interacting atom (or functional group), whereas
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µ and η are defined for atomic and molecular ground states. (For a relevant
discussion in the context of electronegativity, see Politzer et al.12.)

As the preceding discussion has pointed out, hardness and charge capac-
ity have a long-standing association with polarizability, first qualita-
tively3,4,6 and then quantitatively7,13–19. Our primary interest in this paper
is the connection between η and α. However, since the former is simply the
derivative of the chemical potential, µ shall enter the discussion as well.

Evaluation of Hardness

We are looking at two related quantities – polarizability and hardness –
only the first of which is a measurable physical observable. How can the
other be evaluated? η is commonly expressed as11

η = −1
2

( )I A (11)

where I and A are the system’s ionization energy and electron affinity.
Equation (11) can be obtained by (i) assuming a quadratic dependence of E
upon N; (ii) expanding E in a Taylor series around N = N0 (the number of
electrons in the neutral system) and truncating it after the second-order
term; and (iii) a finite-difference approximation of (∂2E/∂N2)v(r)

8,11,20,21. Ana-
logous approaches yield a formula for the chemical potential and electro-
negativity

χ µ= − = +1
2

( )I A . (12)

Equations (11) and (12) are widely used for both atoms and molecules21,22.
A significant question that is associated with these derivations as well as

with Eqs (6) and (8) is the validity of treating E(N) as a continuous, differ-
entiable function, given that the number of electrons of a free atom or mol-
ecule can only change by integral amounts. This issue has been addressed
on a number of occasions, as reviewed by Parr and Yang21; see also the
citations by Politzer et al.8. The problem does not arise with regard to
Eqs (3)–(5) and Eq. (7), because it is quite normal to think of interacting
atoms as having continuously variable numbers of electrons.

We have recently demonstrated that if one is willing to view E(N) as be-
ing continuous, then Eqs (11) and (12) are reasonably good representations
of η and µ for most of the free atoms of groups IIA and IVA–VIIIA 23 (oxy-
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gen being a notable exception). However, the arguments that were presented
are applicable only to neutral atoms. Furthermore, in extending these equa-
tions to polyatomic entities, an additional factor must be taken into ac-
count, which we will now consider.

A frequently neglected aspect of Eqs (6) and (8), which define the chemi-
cal potential and hardness, is the requirement that the nuclear potential be-
held constant. For atoms and monoatomic ions, this is of course trivial;
for molecules, on the other hand, it can be much more significant. If one
wishes to apply Eqs (11) and (12) to polyatomic systems, then the constant
v(r) stipulation means that vertical, not adiabatic, ionization energies and
electron affinities should be used. This is often not done.

The importance of observing the restriction to vertical I and A depends
upon the molecule. Table I presents our computed adiabatic and vertical I
and A for several molecules, most of them open-shell. The calculations were
at the density functional B3PW91/6-311++G(3df,3pd) level. The adiabatic
values are in very good agreement with the corresponding experimental
ones, the average absolute difference being just 0.2 eV. This provides reas-
surance concerning the computational procedure.

For the molecules in Table I, the calculated adiabatic and vertical ioniza-
tion energies tend to be quite similar, except for NH2 and especially NO2.
The electron affinities, however, show more significant differences between
the adiabatic and the vertical, the largest being for F2, Cl2 and again NO2.
For these molecules, using adiabatic rather than vertical I and A in Eqs (11)
and (12) affects η and µ substantially, by 1–2 eV.
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TABLE I
Experimentala and computedb (adiabatic and vertical) ionization energies, I, and electron af-
finities, A (in eV)

Molecule I(exp) I(calc,adiab) I(calc,vert) A(exp) A(calc,adiab) A(calc,vert)

OH 13.0170 13.1 13.2 1.827670 1.6 1.7

CN 13.5984 14.0 14.2 3.862 3.9 3.9

O2 12.0697 12.6 13.0 0.451 0.52 –0.04

F2 15.697 15.6 15.8 3.08 3.5 0.09

Cl2 11.480 11.4 11.5 2.38 2.7 0.90

CH3 9.843 10.4 10.0 0.08 –0.02 –0.58

NH2 11.14 11.2 12.1 0.771 0.60 0.60

NO2 9.586 9.7 13.1 2.273 2.1 1.2

a Ref.24; b B3PW91/6-311++G(3df,3pd).



Except for CH3, all of the molecules in Table I have A(calc,vert) > 0. This
seems to often not be the case, however, especially for closed-shell mole-
cules (many of which may not form stable negative ions). In a 1988 compi-
lation of experimental data for 65 representative organic and inorganic
molecules22, 46 of them – all closed-shell – had A(exp,vert) < 0. They in-
cluded saturated and unsaturated hydrocarbons, halides, benzene deriva-
tives, nitriles, aldehydes, amines, etc. (It is certainly not being implied that
all closed-shell molecules have A(vert) < 0, as can be seen from the exam-
ples of F2 and Cl2 in Table I.)

Having A(vert) < 0 raises an interesting possibility with regard to the che-
mical potential. It means that the function E(N) might have a minimum for
the neutral molecule and therefore, by Eq. (6), µ would equal 0. Thus some
molecules, particularly closed-shell, may have zero or near-zero chemical potentials.
This brings to mind the much broader argument of Ganguly25, that µ = 0
for the stationary state of any neutral atom or molecule; this is also pre-
dicted by Thomas–Fermi theory21.

The consequences of A(vert) < 0 for molecular hardness, as defined by
Eq. (8), are difficult to assess. However, it seems justified to question the de-
rivation of Eq. (11), which was in the context of a monotonically decreas-
ing E(N) 21,26, for molecules for which E(N) is known to have a minimum
near the neutral system. We will therefore consider now the quantitative
representation of molecular hardness.

Hardness and Polarizability Relationships

It seems intuitively reasonable that hardness should be related to polariz-
ability3,4,6,7,11,21. This expectation is supported by both theoretical and em-
pirical studies, primarily involving atoms and atomic clusters16–19; using η
calculated with Eq. (11), η = 0.5(I – A), it was found that η ~ α–1/3. Thus for
18 main group atoms, for which our earlier work provides some justifica-
tion for utilizing Eq. (11)23, we obtain η ~ α–1/3 with linear R2 = 0.868.

These results are not surprising. It is well established that atomic polar-
izability varies inversely with the cube of the ionization energy, α ~ I–3

(refs27–30). Since atomic electron affinities tend to be low (2/3 are <1.0 eV)24,
then in many cases, 0.5(I – A) ~ 0.5I, and so the relationship of α with
0.5(I – A) should be very similar to that with I.

For molecules, α correlates only weakly with I. For one representative
group of 29 molecules31, we obtained R2 = 0.553 for α ~ I–1 and R2 = 0.523
for α ~ I–3. The link between α and η, as given by 0.5(I – A), is also not as
good as it is for atoms; for 36 molecules for which Pearson quoted
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A(exp,vert) 22, we find R2 to be 0.531 for α ~ η–1 and 0.684 for α ~ η–1/3. Ac-
cordingly, if one accepts the concept that η should vary inversely with α,
then it appears that Eq. (11) is significantly less valid for molecules than for
atoms.

One factor in this may be the issue of size, which is totally neglected by
Eq. (11). The polarizabilities of both atoms27,32 and molecules31,33–37 in-
crease linearly with volume; for example, for the 29 molecules mentioned
above, α ~ V has R2 = 0.960 31. The fact that atomic α correlates with both
I and V, but molecular α only with the latter, can be attributed to the in-
verse variation of I and V for atoms (but not molecules), which is well
known empirically and has been explained theoretically38,39.

However, the ionization energy does play a role with respect to molecular
polarizability, especially in the form of the average local ionization energy
on the molecular surface. We introduced the concept of average local ion-
ization energy, I(r), in 1990, defining it within the framework of Hartree–
Fock theory by40

I(r) =
ρ ε

ρ
i i

i

( )| |

( )

r

r∑ (13)

in which ρi(r) is the electronic density of the i-th orbital, having energy εi,
and ρ(r) is the total electronic density. Koopmans’ theorem41,42 provides
support for interpreting I(r) as the average energy needed to remove an
electron at the point r in the space of an atom or molecule. The focus is
upon the specific point, not a particular orbital.

I(r) has proven to be very effective in predicting and ranking sites suscep-
tible to electrophilic attack. For this purpose, we compute it on the molecu-
lar surface, taking this to be the 0.001 electrons/bohr3 contour of ρ(r) 43, and
label it IS(r). The lowest values of IS(r), the IS,min, indicate the locations of
the least tightly-held electrons, most reactive toward electrophiles. Indeed
IS(r) has been successfully related to the reactive behavior of aromatic and
heterocyclic systems, Hammett and Taft substituent constants, protonation
enthalpies and pKa values, etc. For reviews, see Murray and Politzer44,45. It
has been shown that Kohn–Sham density functional IS,min are as effective as
the Hartree–Fock for these applications46.

The significance of I(r) is not limited to reactivity. It correlates with local
temperature and atomic shell structure, reveals electron localization and
strain in C–C bonds, and free radical character in aromatic hydrocar-
bons44,45. IS(r) on the surfaces of atoms has been linked to their electro-
negativities47. Of particular relevance to the present paper is the proposed
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use of IS(r) as an inverse measure of local polarizability29,31,45,48; on a local
level, the dependence of polarizability upon volume is not a factor, because
the volumes being compared are all simply the elements dr.

On the molecular level, the dominant relationship is between α and V, as
stated above. It is improved, however, by taking IS(r) into account. For our
database of 29 molecules, R2 increases from 0.960 for α ~ V to 0.984 for α ~
V/IS,ave (ref.31), where IS,ave is the average of IS(r) over the molecular surface.
We have shown that V/IS,ave can also be used to estimate the relative
polarizabilities of components of molecules, e.g. functional groups49,50; for
this purpose, V and IS,ave are evaluated only for the portion of the molecule
that is of interest.

An Operational Definition of Relative Hardness

In 1990, Nagle15 pointed out the fundamental nature of polarizability, and
showed that it could be the basis for quantifying electronegativity. We sug-
gest that hardness also be quantified in terms of polarizability. In view of
the results obtained by us and by others for atoms, mentioned in the previ-
ous section, we propose η ~ α–1/3. Further, since it has been shown that for
molecules α ~ V/IS,ave with R2 = 0.984, then for polyatomic systems, our op-
erational definition of relative hardness, ηrel, would be

ηrel =
IS,ave

V













1 3/

. (14)

Equation (14) allows ηrel to be calculated for molecules for which α is not
known, and it also permits ηrel to be determined for components of mole-
cules, by means of the procedure that we have introduced for predicting
group and component polarizabilities49,50.

The issue of group (or component) hardness is an important one because
hardness, unlike the chemical potential, is not expected to be uniform
throughout a molecule in its ground state21. However, Eq. (11), η = 0.5(I –
A), even if it could be shown to be valid, would face the problem of obtain-
ing I and A for components of molecules. It is not sufficient to use the I and
A of the gas phase radicals corresponding to functional groups, e.g. NO2 or
NH2, because this ignores the influence of the molecular environment as
well as the requirement that the overall v(r) of the molecule be held con-
stant. Thus a significant feature of Eq. (14) is its capacity for addressing the
relative hardnesses of molecular components.
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In Table II are presented the relative hardness values that are produced by
Eq. (14) for the database of 29 representative molecules mentioned earlier.
The V and IS,ave are taken from Jin et al.31; they were obtained at the
HF/6-31G*//STO-3G* computational level. The molecular surfaces were
taken to be the 0.001 electrons/bohr3 contours of the electronic densities43.
The volumes were determined by enclosing each molecule in a box and ex-
cluding those points with ρ(r) < 0.001.

The molecular ηrel values in Table II cover a rather small range; overall,
they vary by less than a factor of two. In contrast, the polarizabilities and
volumes of these molecules vary by factors of eight and five, respectively31.

Also included in Table II are the estimated relative hardnesses, via
Eq. (14), for nine common molecular components. The V and IS,ave are
again HF/6-31G*//STO-3G* and are from Jin et al.50. For each component,
the V and IS,ave are the results of averaging over at least 25 molecules that
contain it. The partitioning procedure is described elsewhere49,50. When
these data were used to estimate relative group polarizabilities, by means of
α ~ V/IS,ave, these correlated well with Miller’s absolute values51, with R2 =
0.963 50. As would be anticipated, the largest η i

rel is that of fluorine, with its
small size and tightly-bound electrons50. It should be emphasized that the
component η i

rel in Table II are for them in molecular environments; they
are not for the corresponding free radicals.

Since molecular volumes can be treated as sums of component contribu-
tions Vi

35,52, and polarizability is proportional to volume, then it might be
reasonable to write

α α≈ ∑ i
i

(15)

where α i are average atomic (valence state), group and/or bond polariz-
abilities. The approximate validity of Eq. (15) has been confirmed35,36,50,51,53.
If one accepts η ~ α–1/3, it follows from Eqs (14) and (15) that

η
η

rel

rel
=





















∑

−

1
3 1 3

ii

/

. (16)

Equation (16) is tested in Table III for five molecules that are combina-
tions of the components in Table II. The average difference between the ηrel

obtained from Eqs (14) and (16) is 1.7%. This is quite satisfactory, consider-
ing that η i

rel for each component is an average for it in many different mo-
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TABLE II
Relative hardness values for molecules and molecular components, using Eq. (14)

Moleculea ηrel Componentb η i
rel

Naphthalene 0.441 SH 0.721

p-C6H4(NO2)(CH3) 0.460 Br 0.747

Cyclohexanol 0.474 NO2 0.755

C6H5CH3 0.479 CN 0.761

(C2H5)2S 0.479 Cl 0.787

C6H5NH2 0.488 CH3 0.804

(C2H5)2NH 0.498 NH2 0.876

C6H6 0.508 OH 0.998

Pyridine 0.520 F 1.201

Thiophene 0.520

C6F6 0.520

1,4-Dioxane 0.521

C2H5SH 0.543

Pyrrole 0.545

(CH3)2S 0.546

n-C3H7OH 0.548

Furan 0.561

C2H5Cl 0.566

(CH3)2CO 0.569

(CH3)2O 0.600

C2H5OH 0.603

CH3COOH 0.610

CH3CHO 0.629

C2H2 0.683

CH3OH 0.689

CH4 0.728

CH2O 0.732

NH3 0.779

CO 0.789

a IS,ave and V values are from ref.31. b IS,ave and V values are from refs49,50.



lecular environments; it indicates a reasonable level of transferability for
the η i

rel .
It is notable that the η i

rel of the components in Table II cover a greater
range and are, for the most part, larger in magnitude than the ηrel of
the molecules in Table II as well as those composed of these components
(Table II). This of course follows from Eq. (16), which shows that the hard-
ness of a molecule represents a leveling-off of the contributions of its com-
ponents.

CONCLUSIONS

The density functional definitions of the chemical potential and hardness
require that the nuclear potential be held constant. We have pointed out
that this can have substantial implications for µ and η; in particular, it can
result in the chemical potential being zero for some molecules, especially
those with closed shells.

We suggest that hardness be defined operationally in terms of its inverse
relationship with polarizability, and propose Eq. (14) as a formula for esti-
mating the relative hardnesses of molecules and also their components, e.g.
functional groups. In the context of this approach, Eq. (16) shows how the
contributions of the components combine to produce the hardness of the
molecule, with a leveling-off effect that explains the relatively small range
found for a group of molecular hardnesses.
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